DIAL: a web server for the pairwise alignment of two RNA three-dimensional structures using nucleotide, dihedral angle and base-pairing similarities
نویسندگان
چکیده
DIAL (dihedral alignment) is a web server that provides public access to a new dynamic programming algorithm for pairwise 3D structural alignment of RNA. DIAL achieves quadratic time by performing an alignment that accounts for (i) pseudo-dihedral and/or dihedral angle similarity, (ii) nucleotide sequence similarity and (iii) nucleotide base-pairing similarity. DIAL provides access to three alignment algorithms: global (Needleman-Wunsch), local (Smith-Waterman) and semiglobal (modified to yield motif search). Suboptimal alignments are optionally returned, and also Boltzmann pair probabilities Pr(a(i),b(j)) for aligned positions a(i) , b(j) from the optimal alignment. If a non-zero suboptimal alignment score ratio is entered, then the semiglobal alignment algorithm may be used to detect structurally similar occurrences of a user-specified 3D motif. The query motif may be contiguous in the linear chain or fragmented in a number of noncontiguous regions. The DIAL web server provides graphical output which allows the user to view, rotate and enlarge the 3D superposition for the optimal (and suboptimal) alignment of query to target. Although graphical output is available for all three algorithms, the semiglobal motif search may be of most interest in attempts to identify RNA motifs. DIAL is available at http://bioinformatics.bc.edu/clotelab/DIAL.
منابع مشابه
Getting Rid of What Ails Us
DIAL (dihedral alignment) is a web server that provides public access to a new dynamic programming algorithm for pairwise 3D structural alignment of RNA. DIAL achieves quadratic time by performing an alignment that accounts for (i) pseudo-dihedral and/or dihedral angle similarity, (ii) nucleotide sequence similarity and (iii) nucleotide base-pairing
متن کاملVfold: A Web Server for RNA Structure and Folding Thermodynamics Prediction
BACKGROUND The ever increasing discovery of non-coding RNAs leads to unprecedented demand for the accurate modeling of RNA folding, including the predictions of two-dimensional (base pair) and three-dimensional all-atom structures and folding stabilities. Accurate modeling of RNA structure and stability has far-reaching impact on our understanding of RNA functions in human health and our abilit...
متن کاملRNA structure alignment by a unit-vector approach
MOTIVATION The recent discovery of tiny RNA molecules such as microRNAs and small interfering RNA are transforming the view of RNA as a simple information transfer molecule. Similar to proteins, the native three-dimensional structure of RNA determines its biological activity. Therefore, classifying the current structural space is paramount for functionally annotating RNA molecules. The increasi...
متن کاملAlignment of RNA base pairing probability matrices
MOTIVATION Many classes of functional RNA molecules are characterized by highly conserved secondary structures but little detectable sequence similarity. Reliable multiple alignments can therefore be constructed only when the shared structural features are taken into account. Since multiple alignments are used as input for many subsequent methods of data analysis, structure-based alignments are...
متن کاملWeb-Beagle: a web server for the alignment of RNA secondary structures
Web-Beagle (http://beagle.bio.uniroma2.it) is a web server for the pairwise global or local alignment of RNA secondary structures. The server exploits a new encoding for RNA secondary structure and a substitution matrix of RNA structural elements to perform RNA structural alignments. The web server allows the user to compute up to 10 000 alignments in a single run, taking as input sets of RNA s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 35 شماره
صفحات -
تاریخ انتشار 2007